more metrics for tracking skew

mlang/suspicious-skew
Mike Lang 1 week ago
parent 663449498c
commit 2ecd4e0a3e

@ -62,6 +62,18 @@ segment_time_skew = prom.Histogram(
buckets=[-10, -1, -0.5, -0.1, -0.01, -0.001, 0, 0.001, 0.01, 0.1, 0.5, 1, 10],
)
segment_time_skew_non_zero_sum = prom.Gauge(
"segment_time_skew_non_zero_sum",
"",
["channel", "quality", "worker"],
)
segment_time_skew_non_zero_count = prom.Counter(
"segment_time_skew_non_zero_count",
"",
["channel", "quality", "worker"],
)
class TimedOutError(Exception):
pass
@ -411,6 +423,9 @@ class StreamWorker(object):
# but only used if no other source is available.
skew = (date - new_date).total_seconds()
segment_time_skew.labels(self.manager.channel, self.quality, f"{id(self):x}").observe(skew)
if skew != 0:
segment_time_skew_non_zero_sum.labels(self.manager.channel, self.quality, f"{id(self):x}").inc(skew)
segment_time_skew_non_zero_count.labels(self.manager.channel, self.quality, f"{id(self):x}").inc()
if abs(skew) > self.MAX_SEGMENT_TIME_SKEW and not suspicious_skew:
self.trigger_new_worker()
suspicious_skew = True

Loading…
Cancel
Save