|
|
|
@ -62,6 +62,18 @@ segment_time_skew = prom.Histogram(
|
|
|
|
|
buckets=[-10, -1, -0.5, -0.1, -0.01, -0.001, 0, 0.001, 0.01, 0.1, 0.5, 1, 10],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
segment_time_skew_non_zero_sum = prom.Gauge(
|
|
|
|
|
"segment_time_skew_non_zero_sum",
|
|
|
|
|
"",
|
|
|
|
|
["channel", "quality", "worker"],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
segment_time_skew_non_zero_count = prom.Counter(
|
|
|
|
|
"segment_time_skew_non_zero_count",
|
|
|
|
|
"",
|
|
|
|
|
["channel", "quality", "worker"],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TimedOutError(Exception):
|
|
|
|
|
pass
|
|
|
|
@ -411,6 +423,9 @@ class StreamWorker(object):
|
|
|
|
|
# but only used if no other source is available.
|
|
|
|
|
skew = (date - new_date).total_seconds()
|
|
|
|
|
segment_time_skew.labels(self.manager.channel, self.quality, f"{id(self):x}").observe(skew)
|
|
|
|
|
if skew != 0:
|
|
|
|
|
segment_time_skew_non_zero_sum.labels(self.manager.channel, self.quality, f"{id(self):x}").inc(skew)
|
|
|
|
|
segment_time_skew_non_zero_count.labels(self.manager.channel, self.quality, f"{id(self):x}").inc()
|
|
|
|
|
if abs(skew) > self.MAX_SEGMENT_TIME_SKEW and not suspicious_skew:
|
|
|
|
|
self.trigger_new_worker()
|
|
|
|
|
suspicious_skew = True
|
|
|
|
|