We move all connection handling into get_nodes().
This means that problems connecting won't cause further errors
and cause the application to completely crash.
In turn, this means that the behaviour if the database goes down becomes
"continue backfilling from the nodes we know about" instead of crashing.
In testing, GDQ's stream delay went up over 1min, which caused backfillers to backfill
segments at the same time they were downloaded. We increase the window for now,
and also make it configurable.
This will signifigantly increase throughput when downloading
large ranges of segments.
The max concurrency is exposed as a cli arg.
We also slightly modify the logged info, so it reports segments downloaded,
not just number of missing segments (which we might skip downloading for various reasons).
To make this work, we make type a proper segment field.
We also tell get_best_segments to ignore temp segments, since they might go away
before we can actually use them.
We wrap direct dateutil calls to handle two distinct cases:
* `common.dateutil.parse()`: We want to handle arbitrary timestamps including tz info,
then convert them to UTC.
This is used in HLS parsing, and for command line input for backfiller
* `common.dateutil.parse_utc_only()`: We want to only handle UTC timestamps,
but datetime.strptime isn't flexible enough (eg. can't handle missing fractional component).
This is used for restreamer request params.
Backdoor allows the operator to telnet into the given port, and get a python shell
running inside the process, from which you can debug, modify state (eg. set the log level),
or whatever. This is extremely useful for debugging weird states that you encounter randomly
but can't easily reproduce, without restarting the process and needing to wait until it happens again.