ugh
parent
f701bff0a8
commit
4091c0e79e
@ -0,0 +1,5 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
def my_loss_fn(y_true, y_pred):
|
||||||
|
|
||||||
|
return tf.reduce_mean(squared_difference, axis=-1) # Note the `axis=-1`
|
@ -0,0 +1,4 @@
|
|||||||
|
from tensorflow import keras
|
||||||
|
|
||||||
|
input = keras.Input((2,))
|
||||||
|
|
@ -0,0 +1,155 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import tensorflow as tf\n",
|
||||||
|
"import random"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 29,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['🟥', '🟦', '🟧', '🟨', '🟩', '🟪', '🟫']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"squares = [chr(i) for i in range(0x1F7E5, 0x1F7EC)]\n",
|
||||||
|
"tfsquares = tf.constant(squares)\n",
|
||||||
|
"print(squares)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 51,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def tensor_to_string(tensor):\n",
|
||||||
|
" square_select = tf.math.argmax(tensor, 2)\n",
|
||||||
|
"\n",
|
||||||
|
" tfstring = tf.strings.join(\n",
|
||||||
|
" tf.map_fn(\n",
|
||||||
|
" lambda v:\n",
|
||||||
|
" tf.strings.join(\n",
|
||||||
|
" tf.gather(tfsquares, tf.cast(v, tf.int64))), square_select, fn_output_signature=tf.string), \"\\n\")\n",
|
||||||
|
"\n",
|
||||||
|
" return tfstring.numpy().decode()\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 95,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"tf.Tensor([0. 0. 0. 1. 0. 0. 0.], shape=(7,), dtype=float32)\n",
|
||||||
|
"tf.Tensor([[3]], shape=(1, 1), dtype=int64)\n",
|
||||||
|
"🟦🟪🟦🟫🟦🟧🟨🟨\n",
|
||||||
|
"🟦🟫🟧🟫🟪🟥🟧🟪\n",
|
||||||
|
"🟫🟩🟨🟧🟨🟫🟪🟨\n",
|
||||||
|
"🟧🟦🟨🟪🟦🟨🟥🟨\n",
|
||||||
|
"🟫🟧🟧🟨🟧🟧🟩🟪\n",
|
||||||
|
"🟦🟦🟨🟦🟥🟫🟧🟩\n",
|
||||||
|
"🟫🟩🟧🟫🟨🟫🟥🟩\n",
|
||||||
|
"🟧🟫🟫🟩🟧🟧🟫🟩\n",
|
||||||
|
"--------------\n",
|
||||||
|
"tf.Tensor(\n",
|
||||||
|
"[[0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||||
|
" [0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||||
|
" [0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||||
|
" [0. 0. 1. 0. 0. 1. 0. 0.]\n",
|
||||||
|
" [0. 0. 1. 0. 0. 1. 0. 0.]\n",
|
||||||
|
" [0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||||
|
" [0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||||
|
" [0. 1. 0. 0. 0. 0. 1. 0.]], shape=(8, 8), dtype=float32)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"oh = tf.one_hot(3, 7)\n",
|
||||||
|
"print(oh)\n",
|
||||||
|
"print(tf.where(oh))\n",
|
||||||
|
"\n",
|
||||||
|
"# a = tf.constant([[list(tf.one_hot(random.randrange(7), 7)) for i in range(8) ] for i in range(8)], shape=(8,8,len(squares)))\n",
|
||||||
|
"\n",
|
||||||
|
"# print([[list(tf.one_hot(random.randrange(7), 7)) for i in range(8) ] for i in range(8)])\n",
|
||||||
|
"e = [[random.randrange(7) for i in range(8)] for i in range(8)]\n",
|
||||||
|
"# print(e)\n",
|
||||||
|
"\n",
|
||||||
|
"a = tf.one_hot(tf.constant(e, shape=(8, 8)), len(squares))\n",
|
||||||
|
"\n",
|
||||||
|
"print(tensor_to_string(a))\n",
|
||||||
|
"print(\"--------------\")\n",
|
||||||
|
"# print(tensor_to_string(tf.transpose(a, [1, 0, 2])))\n",
|
||||||
|
"# print(\"--------------\")\n",
|
||||||
|
"# print(tensor_to_string(tf.linalg.matmul( a , tf.constant(\n",
|
||||||
|
"# [\n",
|
||||||
|
"# [0, 0, 0, 0, 0, 0, 0, 1],\n",
|
||||||
|
"# [0, 0, 0, 0, 0, 0, 1, 0],\n",
|
||||||
|
"# [0, 0, 0, 0, 0, 1, 0, 0],\n",
|
||||||
|
"# [0, 0, 0, 0, 1, 0, 0, 0],\n",
|
||||||
|
"# [0, 0, 0, 1, 0, 0, 0, 0],\n",
|
||||||
|
"# [0, 0, 1, 0, 0, 0, 0, 0],\n",
|
||||||
|
"# [0, 1, 0, 0, 0, 0, 0, 0],\n",
|
||||||
|
"# [1, 0, 0, 0, 0, 0, 0, 0]\n",
|
||||||
|
"# ], dtype=tf.float32, shape=(8,8,1)\n",
|
||||||
|
"# ), transpose_a=True)))\n",
|
||||||
|
"# print(\"--------------\")\n",
|
||||||
|
"# print(tensor_to_string(tf.reverse(a, (0,))))\n",
|
||||||
|
"# print(\"--------------\")\n",
|
||||||
|
"# print(tensor_to_string(tf.reverse(a, (1,))))\n",
|
||||||
|
"# print(tensor_to_string(\n",
|
||||||
|
"# tf.linalg.matmul(\n",
|
||||||
|
"# tf.transpose(a, [0, 2, 1]),\n",
|
||||||
|
"# tf.reverse(a, (1,)))\n",
|
||||||
|
"# ))\n",
|
||||||
|
"print(\n",
|
||||||
|
" tf.einsum(\n",
|
||||||
|
" \"ijk,ijk->ij\",\n",
|
||||||
|
" a,\n",
|
||||||
|
" tf.reverse(a, (1,)))\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"# print(tf.constant(range(6), shape=(2,3)))\n",
|
||||||
|
"# tf.map_fn(tf.math.reduce_sum, tf.constant(range(6), shape=(2,3)))\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": ".patch_gen_venv",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.0"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in New Issue