mirror of https://github.com/ekimekim/wubloader
First functional* version.
parent
272dcded21
commit
9de8883175
@ -0,0 +1,17 @@
|
|||||||
|
FROM debian:latest
|
||||||
|
|
||||||
|
RUN apt update &&\
|
||||||
|
apt install -y python3 libpq-dev python3-pip curl unzip ffmpeg
|
||||||
|
|
||||||
|
COPY ../common /tmp/common
|
||||||
|
RUN pip install /tmp/common && rm -r /tmp/common
|
||||||
|
|
||||||
|
COPY buscribe /tmp/buscribe
|
||||||
|
RUN pip install /tmp/buscribe && rm -r /tmp/buscribe && \
|
||||||
|
mkdir /usr/share/buscribe && cd /usr/share/buscribe && \
|
||||||
|
curl -LO http://alphacephei.com/vosk/models/vosk-model-small-en-us-0.15.zip && \
|
||||||
|
unzip vosk-model-small-en-us-0.15.zip && rm vosk-model-small-en-us-0.15.zip && \
|
||||||
|
curl -LO https://alphacephei.com/vosk/models/vosk-model-spk-0.4.zip && \
|
||||||
|
unzip vosk-model-spk-0.4.zip && rm vosk-model-spk-0.4.zip
|
||||||
|
|
||||||
|
ENTRYPOINT ["python3", "-m", "buscribe", "--base-dir", "/mnt"]
|
@ -0,0 +1,12 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
|
||||||
|
import argh
|
||||||
|
|
||||||
|
from buscribe.main import main
|
||||||
|
|
||||||
|
LOG_FORMAT = "[%(asctime)s] %(levelname)8s %(name)s(%(module)s:%(lineno)d): %(message)s"
|
||||||
|
|
||||||
|
level = os.environ.get('WUBLOADER_LOG_LEVEL', 'INFO').upper()
|
||||||
|
logging.basicConfig(level=level, format=LOG_FORMAT)
|
||||||
|
argh.dispatch_command(main)
|
@ -0,0 +1,98 @@
|
|||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import subprocess
|
||||||
|
from datetime import timedelta, datetime
|
||||||
|
|
||||||
|
from psycopg2._psycopg import cursor
|
||||||
|
|
||||||
|
from buscribe.recognizer import BuscribeRecognizer
|
||||||
|
|
||||||
|
|
||||||
|
class HitMissingSegment(Exception):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def transcribe_segments(segments: list, sample_rate: int, recognizer: BuscribeRecognizer, start_of_transcript: datetime,
|
||||||
|
db_cursor: cursor):
|
||||||
|
"""Starts transcribing from a list of segments.
|
||||||
|
|
||||||
|
Only starts committing new lines to the database after reaching start_of_transcript.
|
||||||
|
|
||||||
|
The recognizer must be initialized to sample_rate and have start time set.
|
||||||
|
|
||||||
|
Returns the end time of the last transcribed line."""
|
||||||
|
|
||||||
|
segments_end_time = segments[0].start
|
||||||
|
|
||||||
|
for segment in segments:
|
||||||
|
|
||||||
|
if segment is None:
|
||||||
|
return segments_end_time
|
||||||
|
|
||||||
|
segments_end_time += segment.duration
|
||||||
|
|
||||||
|
process = subprocess.Popen(['ffmpeg',
|
||||||
|
'-loglevel', 'quiet',
|
||||||
|
'-i', segment.path,
|
||||||
|
'-ar', str(sample_rate),
|
||||||
|
'-ac', '1', # TODO: Check for advanced downmixing
|
||||||
|
'-f', 's16le', '-'],
|
||||||
|
stdout=subprocess.PIPE)
|
||||||
|
while True:
|
||||||
|
data = process.stdout.read(16000)
|
||||||
|
if len(data) == 0:
|
||||||
|
break
|
||||||
|
if recognizer.AcceptWaveform(data):
|
||||||
|
result_json = json.loads(recognizer.Result())
|
||||||
|
logging.debug(json.dumps(result_json, indent=2))
|
||||||
|
|
||||||
|
if result_json["text"] == "":
|
||||||
|
continue
|
||||||
|
|
||||||
|
line_start_time = recognizer.segments_start_time + timedelta(seconds=result_json["result"][0]["start"])
|
||||||
|
line_end_time = recognizer.segments_start_time + timedelta(seconds=result_json["result"][-1]["end"])
|
||||||
|
|
||||||
|
if line_start_time > start_of_transcript:
|
||||||
|
write_line(result_json, line_start_time, line_end_time, db_cursor)
|
||||||
|
|
||||||
|
return segments_end_time
|
||||||
|
|
||||||
|
|
||||||
|
def write_line(line_json: dict, line_start_time: datetime, line_end_time: datetime, db_cursor):
|
||||||
|
"""Commits line to the database"""
|
||||||
|
db_cursor.execute(
|
||||||
|
"INSERT INTO buscribe.public.buscribe_transcriptions("
|
||||||
|
"start_time, "
|
||||||
|
"end_time, "
|
||||||
|
"transcription_line, "
|
||||||
|
"line_speaker, "
|
||||||
|
"transcription_json) VALUES (%s, %s ,%s, %s, %s)",
|
||||||
|
(line_start_time,
|
||||||
|
line_end_time,
|
||||||
|
line_json["text"],
|
||||||
|
line_json["spk"] if "spk" in line_json else None,
|
||||||
|
json.dumps(line_json)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_end_of_transcript(db_cursor):
|
||||||
|
"""Grab the end timestamp of the current transcript.
|
||||||
|
|
||||||
|
If there is no existing transcript returns default; used for cold starts."""
|
||||||
|
db_cursor.execute("SELECT end_time FROM buscribe.public.buscribe_transcriptions ORDER BY end_time DESC LIMIT 1")
|
||||||
|
end_of_transcript_row = db_cursor.fetchone()
|
||||||
|
|
||||||
|
return end_of_transcript_row.end_time if end_of_transcript_row is not None else None
|
||||||
|
|
||||||
|
|
||||||
|
def finish_off_recognizer(recognizer: BuscribeRecognizer, db_cursor):
|
||||||
|
"""Flush the recognizer, commit the final line to the database and reset it."""
|
||||||
|
final_result_json = json.loads(recognizer.FinalResult()) # Flush the tubes
|
||||||
|
|
||||||
|
line_start_time = recognizer.segments_start_time + timedelta(seconds=final_result_json["result"][0]["start"])
|
||||||
|
line_end_time = recognizer.segments_start_time + timedelta(seconds=final_result_json["result"][-1]["end"])
|
||||||
|
|
||||||
|
write_line(final_result_json, line_start_time, line_end_time, db_cursor)
|
||||||
|
|
||||||
|
recognizer.Reset()
|
@ -0,0 +1,95 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from datetime import timedelta, datetime
|
||||||
|
from time import sleep
|
||||||
|
|
||||||
|
import argh
|
||||||
|
import common
|
||||||
|
from common import dateutil
|
||||||
|
from common.database import DBManager
|
||||||
|
|
||||||
|
from buscribe.buscribe import get_end_of_transcript, transcribe_segments, finish_off_recognizer
|
||||||
|
from buscribe.recognizer import BuscribeRecognizer
|
||||||
|
|
||||||
|
|
||||||
|
@argh.arg('--database',
|
||||||
|
help='Postgres conection string for database to write transcribed lines to. Either a space-separated list of '
|
||||||
|
'key=value pairs, or a URI like: postgresql://USER:PASSWORD@HOST/DBNAME?KEY=VALUE .')
|
||||||
|
@argh.arg('--model',
|
||||||
|
help='Path to STT model files. Defaults to /usr/share/buscribe/vosk-model-en-us-0.21/')
|
||||||
|
@argh.arg('--spk-model',
|
||||||
|
help='Path to speaker recognition model files. Defaults to /usr/share/buscribe/vosk-model-spk-0.4/')
|
||||||
|
@argh.arg('--start-time',
|
||||||
|
help='Start time of the transcript. Buscript will try to start reading 2 min before this time, if available, '
|
||||||
|
'to prime the model. The transcripts for that time will not be written to the database. If not given '
|
||||||
|
'transcription will start after last already transcribed line.')
|
||||||
|
@argh.arg('--end-time',
|
||||||
|
help='End of transcript. If not given continues to transcribe live.')
|
||||||
|
@argh.arg('--base-dir',
|
||||||
|
help='Directory from which segments will be grabbed. Default is current working directory.')
|
||||||
|
def main(database="", base_dir=".",
|
||||||
|
model="/usr/share/buscribe/vosk-model-en-us-0.21/", spk_model="/usr/share/buscribe/vosk-model-spk-0.4/",
|
||||||
|
start_time=None, end_time=None):
|
||||||
|
SAMPLE_RATE = 48000
|
||||||
|
segments_dir = os.path.join(base_dir, "desertbus", "source")
|
||||||
|
|
||||||
|
logging.debug("Grabbing database...")
|
||||||
|
db_manager = DBManager(dsn=database)
|
||||||
|
db_conn = db_manager.get_conn()
|
||||||
|
db_cursor = db_conn.cursor()
|
||||||
|
logging.debug("Got database cursor.")
|
||||||
|
|
||||||
|
logging.info("Figuring out starting time...")
|
||||||
|
if start_time is not None:
|
||||||
|
start_time = dateutil.parse(start_time)
|
||||||
|
else:
|
||||||
|
start_time = get_end_of_transcript(db_cursor)
|
||||||
|
|
||||||
|
if end_time is not None:
|
||||||
|
end_time = dateutil.parse(end_time)
|
||||||
|
|
||||||
|
# No start time argument AND no end of transcript (empty database)
|
||||||
|
if start_time is None:
|
||||||
|
logging.error("Couldn't figure out start time!")
|
||||||
|
db_conn.close()
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
logging.info("Loading models...")
|
||||||
|
recognizer = BuscribeRecognizer(SAMPLE_RATE, model, spk_model)
|
||||||
|
logging.info("Models loaded.")
|
||||||
|
|
||||||
|
logging.info('Transcribing from {}'.format(start_time))
|
||||||
|
|
||||||
|
# Start priming the recognizer if possible
|
||||||
|
start_time -= timedelta(minutes=2)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# If end time isn't given, use current time (plus fudge) to get a "live" segment list
|
||||||
|
segments = common.get_best_segments(segments_dir,
|
||||||
|
start_time,
|
||||||
|
end_time if end_time is not None else datetime.now() + timedelta(minutes=2))
|
||||||
|
# Remove initial None segment if it exists
|
||||||
|
if segments[0] is None:
|
||||||
|
segments = segments[1:]
|
||||||
|
|
||||||
|
if recognizer.segments_start_time is None:
|
||||||
|
recognizer.segments_start_time = segments[0].start
|
||||||
|
|
||||||
|
segments_end_time = transcribe_segments(segments, SAMPLE_RATE, recognizer, start_time, db_cursor)
|
||||||
|
|
||||||
|
if end_time is not None and segments_end_time >= end_time:
|
||||||
|
# Work's done!
|
||||||
|
finish_off_recognizer(recognizer, db_cursor)
|
||||||
|
db_conn.close()
|
||||||
|
exit(0)
|
||||||
|
elif datetime.now() - segments_end_time > timedelta(minutes=5):
|
||||||
|
# Last seen segment ended more than five minutes ago. We hit a gap that will likely stay unfilled.
|
||||||
|
# Reset and jump to the other end of the gap.
|
||||||
|
finish_off_recognizer(recognizer, db_cursor)
|
||||||
|
else:
|
||||||
|
# End of live segment or a gap that is not old and might get filled.
|
||||||
|
# Give it a bit of time and continue.
|
||||||
|
# Note: if the gap is not filled within 30s, we jump to the next available segment.
|
||||||
|
sleep(30)
|
||||||
|
|
||||||
|
start_time = segments_end_time
|
@ -0,0 +1,23 @@
|
|||||||
|
from vosk import Model, SpkModel, KaldiRecognizer
|
||||||
|
|
||||||
|
|
||||||
|
class BuscribeRecognizer(KaldiRecognizer):
|
||||||
|
segments_start_time = None
|
||||||
|
|
||||||
|
def __init__(self, sample_rate=48000, model_path="model_small", spk_model_path="spk_model"):
|
||||||
|
"""Loads the speech recognition model and initializes the recognizer.
|
||||||
|
|
||||||
|
Model paths are file paths to the directories that contain the models.
|
||||||
|
|
||||||
|
Returns a recognizer object.
|
||||||
|
"""
|
||||||
|
self.model = Model(model_path)
|
||||||
|
self.spk_model = SpkModel(spk_model_path)
|
||||||
|
|
||||||
|
super(BuscribeRecognizer, self).__init__(self.model, sample_rate, self.spk_model)
|
||||||
|
|
||||||
|
self.SetWords(True)
|
||||||
|
|
||||||
|
def Reset(self):
|
||||||
|
super(BuscribeRecognizer, self).Reset()
|
||||||
|
self.segments_start_time = None
|
@ -0,0 +1,16 @@
|
|||||||
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name = "wubloader-buscribe",
|
||||||
|
version = "0.0.0",
|
||||||
|
packages = find_packages(),
|
||||||
|
install_requires = [
|
||||||
|
"argh",
|
||||||
|
"psycopg2",
|
||||||
|
"greenlet==0.4.16",
|
||||||
|
"psycogreen",
|
||||||
|
"wubloader-common",
|
||||||
|
"python-dateutil",
|
||||||
|
"vosk"
|
||||||
|
],
|
||||||
|
)
|
@ -0,0 +1,11 @@
|
|||||||
|
DROP TABLE buscribe_transcriptions;
|
||||||
|
|
||||||
|
CREATE TABLE buscribe_transcriptions
|
||||||
|
(
|
||||||
|
id BIGSERIAL PRIMARY KEY,
|
||||||
|
start_time timestamp without time zone NOT NULL,
|
||||||
|
end_time timestamp without time zone NOT NULL,
|
||||||
|
transcription_line text NOT NULL,
|
||||||
|
line_speaker float[128],
|
||||||
|
transcription_json jsonb NOT NULL
|
||||||
|
);
|
@ -0,0 +1,124 @@
|
|||||||
|
|
||||||
|
"""A place for common utilities between wubloader components"""
|
||||||
|
import datetime
|
||||||
|
import errno
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
|
||||||
|
from .segments import get_best_segments, rough_cut_segments, fast_cut_segments, full_cut_segments, parse_segment_path, SegmentInfo
|
||||||
|
from .stats import timed, PromLogCountsHandler, install_stacksampler
|
||||||
|
|
||||||
|
|
||||||
|
def dt_to_bustime(start, dt):
|
||||||
|
"""Convert a datetime to bus time. Bus time is seconds since the given start point."""
|
||||||
|
return (dt - start).total_seconds()
|
||||||
|
|
||||||
|
|
||||||
|
def bustime_to_dt(start, bustime):
|
||||||
|
"""Convert from bus time to a datetime"""
|
||||||
|
return start + datetime.timedelta(seconds=bustime)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_bustime(bustime):
|
||||||
|
"""Convert from bus time human-readable string [-]HH:MM[:SS[.fff]]
|
||||||
|
to float seconds since bustime 00:00. Inverse of format_bustime(),
|
||||||
|
see it for detail."""
|
||||||
|
if bustime.startswith('-'):
|
||||||
|
# parse without the -, then negate it
|
||||||
|
return -parse_bustime(bustime[1:])
|
||||||
|
|
||||||
|
parts = bustime.strip().split(':')
|
||||||
|
if len(parts) == 2:
|
||||||
|
hours, mins = parts
|
||||||
|
secs = 0
|
||||||
|
elif len(parts) == 3:
|
||||||
|
hours, mins, secs = parts
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid bustime: must be HH:MM[:SS]")
|
||||||
|
hours = int(hours)
|
||||||
|
mins = int(mins)
|
||||||
|
secs = float(secs)
|
||||||
|
return 3600 * hours + 60 * mins + secs
|
||||||
|
|
||||||
|
|
||||||
|
def format_bustime(bustime, round="millisecond"):
|
||||||
|
"""Convert bustime to a human-readable string (-)HH:MM:SS.fff, with the
|
||||||
|
ending cut off depending on the value of round:
|
||||||
|
"millisecond": (default) Round to the nearest millisecond.
|
||||||
|
"second": Round down to the current second.
|
||||||
|
"minute": Round down to the current minute.
|
||||||
|
Examples:
|
||||||
|
00:00:00.000
|
||||||
|
01:23:00
|
||||||
|
110:50
|
||||||
|
159:59:59.999
|
||||||
|
-10:30:01.100
|
||||||
|
Negative times are formatted as time-until-start, preceeded by a minus
|
||||||
|
sign.
|
||||||
|
eg. "-1:20:00" indicates the run begins in 80 minutes.
|
||||||
|
"""
|
||||||
|
sign = ''
|
||||||
|
if bustime < 0:
|
||||||
|
sign = '-'
|
||||||
|
bustime = -bustime
|
||||||
|
total_mins, secs = divmod(bustime, 60)
|
||||||
|
hours, mins = divmod(total_mins, 60)
|
||||||
|
parts = [
|
||||||
|
"{:02d}".format(int(hours)),
|
||||||
|
"{:02d}".format(int(mins)),
|
||||||
|
]
|
||||||
|
if round == "minute":
|
||||||
|
pass
|
||||||
|
elif round == "second":
|
||||||
|
parts.append("{:02d}".format(int(secs)))
|
||||||
|
elif round == "millisecond":
|
||||||
|
parts.append("{:06.3f}".format(secs))
|
||||||
|
else:
|
||||||
|
raise ValueError("Bad rounding value: {!r}".format(round))
|
||||||
|
return sign + ":".join(parts)
|
||||||
|
|
||||||
|
|
||||||
|
def rename(old, new):
|
||||||
|
"""Atomic rename that succeeds if the target already exists, since we're naming everything
|
||||||
|
by hash anyway, so if the filepath already exists the file itself is already there.
|
||||||
|
In this case, we delete the source file.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
os.rename(old, new)
|
||||||
|
except OSError as e:
|
||||||
|
if e.errno != errno.EEXIST:
|
||||||
|
raise
|
||||||
|
os.remove(old)
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_directory(path):
|
||||||
|
"""Create directory that contains path, as well as any parent directories,
|
||||||
|
if they don't already exist."""
|
||||||
|
dir_path = os.path.dirname(path)
|
||||||
|
os.makedirs(dir_path, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def jitter(interval):
|
||||||
|
"""Apply some 'jitter' to an interval. This is a random +/- 10% change in order to
|
||||||
|
smooth out patterns and prevent everything from retrying at the same time.
|
||||||
|
"""
|
||||||
|
return interval * (0.9 + 0.2 * random.random())
|
||||||
|
|
||||||
|
|
||||||
|
def writeall(write, value):
|
||||||
|
"""Helper for writing a complete string to a file-like object.
|
||||||
|
Pass the write function and the value to write, and it will loop if needed to ensure
|
||||||
|
all data is written.
|
||||||
|
Works for both text and binary files, as long as you pass the right value type for
|
||||||
|
the write function.
|
||||||
|
"""
|
||||||
|
while value:
|
||||||
|
n = write(value)
|
||||||
|
if n is None:
|
||||||
|
# The write func doesn't return the amount written, assume it always writes everything
|
||||||
|
break
|
||||||
|
if n == 0:
|
||||||
|
# This would cause an infinite loop...blow up instead so it's clear what the problem is
|
||||||
|
raise Exception("Wrote 0 chars while calling {} with {}-char {}".format(write, len(value), type(value).__name__))
|
||||||
|
# remove the first n chars and go again if we have anything left
|
||||||
|
value = value[n:]
|
@ -0,0 +1,73 @@
|
|||||||
|
|
||||||
|
"""
|
||||||
|
Code shared between components that touch the database.
|
||||||
|
Note that this code requires psycopg2 and psycogreen, but the common module
|
||||||
|
as a whole does not to avoid needing to install them for components that don't need it.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from contextlib import contextmanager
|
||||||
|
|
||||||
|
import psycopg2
|
||||||
|
import psycopg2.extensions
|
||||||
|
import psycopg2.extras
|
||||||
|
from psycogreen.gevent import patch_psycopg
|
||||||
|
|
||||||
|
|
||||||
|
class DBManager(object):
|
||||||
|
"""Patches psycopg2 before any connections are created. Stores connect info
|
||||||
|
for easy creation of new connections, and sets some defaults before
|
||||||
|
returning them.
|
||||||
|
|
||||||
|
It has the ability to serve as a primitive connection pool, as getting a
|
||||||
|
new conn will return existing conns it knows about first, but you
|
||||||
|
should use a real conn pool for any non-trivial use.
|
||||||
|
|
||||||
|
Returned conns are set to seralizable isolation level, autocommit, and use
|
||||||
|
NamedTupleCursor cursors."""
|
||||||
|
def __init__(self, connect_timeout=30, **connect_kwargs):
|
||||||
|
patch_psycopg()
|
||||||
|
self.conns = []
|
||||||
|
self.connect_timeout = connect_timeout
|
||||||
|
self.connect_kwargs = connect_kwargs
|
||||||
|
|
||||||
|
def put_conn(self, conn):
|
||||||
|
self.conns.append(conn)
|
||||||
|
|
||||||
|
def get_conn(self):
|
||||||
|
if self.conns:
|
||||||
|
return self.conns.pop(0)
|
||||||
|
conn = psycopg2.connect(cursor_factory=psycopg2.extras.NamedTupleCursor,
|
||||||
|
connect_timeout=self.connect_timeout, **self.connect_kwargs)
|
||||||
|
# We use serializable because it means less issues to think about,
|
||||||
|
# we don't care about the performance concerns and everything we do is easily retryable.
|
||||||
|
# This shouldn't matter in practice anyway since everything we're doing is either read-only
|
||||||
|
# searches or targetted single-row updates.
|
||||||
|
conn.isolation_level = psycopg2.extensions.ISOLATION_LEVEL_SERIALIZABLE
|
||||||
|
conn.autocommit = True
|
||||||
|
return conn
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def transaction(conn):
|
||||||
|
"""Helper context manager that runs the code block as a single database transaction
|
||||||
|
instead of in autocommit mode. The only difference between this and "with conn" is
|
||||||
|
that we explicitly disable then re-enable autocommit."""
|
||||||
|
old_autocommit = conn.autocommit
|
||||||
|
conn.autocommit = False
|
||||||
|
try:
|
||||||
|
with conn:
|
||||||
|
yield
|
||||||
|
finally:
|
||||||
|
conn.autocommit = old_autocommit
|
||||||
|
|
||||||
|
|
||||||
|
def query(conn, query, *args, **kwargs):
|
||||||
|
"""Helper that takes a conn, creates a cursor and executes query against it,
|
||||||
|
then returns the cursor.
|
||||||
|
Variables may be given as positional or keyword args (but not both), corresponding
|
||||||
|
to %s vs %(key)s placeholder forms."""
|
||||||
|
if args and kwargs:
|
||||||
|
raise TypeError("Cannot give both args and kwargs")
|
||||||
|
cur = conn.cursor()
|
||||||
|
cur.execute(query, args or kwargs or None)
|
||||||
|
return cur
|
@ -0,0 +1,23 @@
|
|||||||
|
|
||||||
|
|
||||||
|
"""Wrapper code around dateutil to use it more sanely"""
|
||||||
|
|
||||||
|
|
||||||
|
# required so we are able to import dateutil despite this module also being called dateutil
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
import dateutil.parser
|
||||||
|
import dateutil.tz
|
||||||
|
|
||||||
|
|
||||||
|
def parse(timestamp):
|
||||||
|
"""Parse given timestamp, convert to UTC, and return naive UTC datetime"""
|
||||||
|
dt = dateutil.parser.parse(timestamp)
|
||||||
|
if dt.tzinfo is not None:
|
||||||
|
dt = dt.astimezone(dateutil.tz.tzutc()).replace(tzinfo=None)
|
||||||
|
return dt
|
||||||
|
|
||||||
|
|
||||||
|
def parse_utc_only(timestamp):
|
||||||
|
"""Parse given timestamp, but assume it's already in UTC and ignore other timezone info"""
|
||||||
|
return dateutil.parser.parse(timestamp, ignoretz=True)
|
@ -0,0 +1,98 @@
|
|||||||
|
"""
|
||||||
|
Code shared between components to gather stats from flask methods.
|
||||||
|
Note that this code requires flask, but the common module as a whole does not
|
||||||
|
to avoid needing to install them for components that don't need it.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import functools
|
||||||
|
|
||||||
|
from flask import request
|
||||||
|
from flask import g as request_store
|
||||||
|
from monotonic import monotonic
|
||||||
|
import prometheus_client as prom
|
||||||
|
|
||||||
|
|
||||||
|
# Generic metrics that all http requests get logged to (see below for specific metrics per endpoint)
|
||||||
|
|
||||||
|
LATENCY_HELP = "Time taken to run the request handler and create a response"
|
||||||
|
# buckets: very long playlists / cutting can be quite slow,
|
||||||
|
# so we have a wider range of latencies than default, up to 10min.
|
||||||
|
LATENCY_BUCKETS = [.001, .005, .01, .05, .1, .5, 1, 5, 10, 30, 60, 120, 300, 600]
|
||||||
|
generic_latency = prom.Histogram(
|
||||||
|
'http_request_latency_all', LATENCY_HELP,
|
||||||
|
['endpoint', 'method', 'status'],
|
||||||
|
buckets=LATENCY_BUCKETS,
|
||||||
|
)
|
||||||
|
|
||||||
|
CONCURRENT_HELP = 'Number of requests currently ongoing'
|
||||||
|
generic_concurrent = prom.Gauge(
|
||||||
|
'http_request_concurrency_all', CONCURRENT_HELP,
|
||||||
|
['endpoint', 'method'],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def request_stats(fn):
|
||||||
|
"""Decorator that wraps a handler func to collect metrics.
|
||||||
|
Adds handler func args as labels, along with 'endpoint' label using func's name,
|
||||||
|
method and response status where applicable."""
|
||||||
|
# We have to jump through some hoops here, because the prometheus client lib demands
|
||||||
|
# we pre-define our label names, but we don't know the names of the handler kwargs
|
||||||
|
# until the first time the function's called. So we delay defining the metrics until
|
||||||
|
# first call.
|
||||||
|
# In addition, it doesn't let us have different sets of labels with the same name.
|
||||||
|
# So we record everything twice: Once under a generic name with only endpoint, method
|
||||||
|
# and status, and once under a name specific to the endpoint with the full set of labels.
|
||||||
|
metrics = {}
|
||||||
|
endpoint = fn.__name__
|
||||||
|
|
||||||
|
@functools.wraps(fn)
|
||||||
|
def _stats(**kwargs):
|
||||||
|
if not metrics:
|
||||||
|
# first call, set up metrics
|
||||||
|
labels_no_status = sorted(kwargs.keys()) + ['endpoint', 'method']
|
||||||
|
labels = labels_no_status + ['status']
|
||||||
|
metrics['latency'] = prom.Histogram(
|
||||||
|
'http_request_latency_{}'.format(endpoint), LATENCY_HELP,
|
||||||
|
labels, buckets=LATENCY_BUCKETS,
|
||||||
|
)
|
||||||
|
metrics['concurrent'] = prom.Gauge(
|
||||||
|
'http_request_concurrency_{}'.format(endpoint), CONCURRENT_HELP,
|
||||||
|
labels_no_status,
|
||||||
|
)
|
||||||
|
|
||||||
|
request_store.metrics = metrics
|
||||||
|
request_store.endpoint = endpoint
|
||||||
|
request_store.method = request.method
|
||||||
|
request_store.labels = {k: str(v) for k, v in kwargs.items()}
|
||||||
|
generic_concurrent.labels(endpoint=endpoint, method=request.method).inc()
|
||||||
|
metrics['concurrent'].labels(endpoint=endpoint, method=request.method, **request_store.labels).inc()
|
||||||
|
request_store.start_time = monotonic()
|
||||||
|
return fn(**kwargs)
|
||||||
|
|
||||||
|
return _stats
|
||||||
|
|
||||||
|
|
||||||
|
def after_request(response):
|
||||||
|
"""Must be registered to run after requests. Finishes tracking the request
|
||||||
|
and logs most of the metrics.
|
||||||
|
We do it in this way, instead of inside the request_stats wrapper, because it lets flask
|
||||||
|
normalize the handler result into a Response object.
|
||||||
|
"""
|
||||||
|
if 'metrics' not in request_store:
|
||||||
|
return response # untracked handler
|
||||||
|
|
||||||
|
end_time = monotonic()
|
||||||
|
metrics = request_store.metrics
|
||||||
|
endpoint = request_store.endpoint
|
||||||
|
method = request_store.method
|
||||||
|
labels = request_store.labels
|
||||||
|
start_time = request_store.start_time
|
||||||
|
|
||||||
|
generic_concurrent.labels(endpoint=endpoint, method=method).dec()
|
||||||
|
metrics['concurrent'].labels(endpoint=endpoint, method=method, **labels).dec()
|
||||||
|
|
||||||
|
status = str(response.status_code)
|
||||||
|
generic_latency.labels(endpoint=endpoint, method=method, status=status).observe(end_time - start_time)
|
||||||
|
metrics['latency'].labels(endpoint=endpoint, method=method, status=status, **labels).observe(end_time - start_time)
|
||||||
|
|
||||||
|
return response
|
@ -0,0 +1,67 @@
|
|||||||
|
|
||||||
|
import time
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import gevent
|
||||||
|
|
||||||
|
from .requests import InstrumentedSession
|
||||||
|
|
||||||
|
# Wraps all requests in some metric collection
|
||||||
|
requests = InstrumentedSession()
|
||||||
|
|
||||||
|
|
||||||
|
class GoogleAPIClient(object):
|
||||||
|
"""Manages access to google apis and maintains an active access token.
|
||||||
|
Make calls using client.request(), which is a wrapper for requests.request().
|
||||||
|
"""
|
||||||
|
|
||||||
|
ACCESS_TOKEN_ERROR_RETRY_INTERVAL = 10
|
||||||
|
# Refresh token 10min before it expires (it normally lasts an hour)
|
||||||
|
ACCESS_TOKEN_REFRESH_TIME_BEFORE_EXPIRY = 600
|
||||||
|
|
||||||
|
def __init__(self, client_id, client_secret, refresh_token):
|
||||||
|
self.client_id = client_id
|
||||||
|
self.client_secret = client_secret
|
||||||
|
self.refresh_token = refresh_token
|
||||||
|
|
||||||
|
self._first_get_access_token = gevent.spawn(self.get_access_token)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def access_token(self):
|
||||||
|
"""Blocks if access token unavailable yet"""
|
||||||
|
self._first_get_access_token.join()
|
||||||
|
return self._access_token
|
||||||
|
|
||||||
|
def get_access_token(self):
|
||||||
|
"""Authenticates against google's API and retrieves a token we will use in
|
||||||
|
subsequent requests.
|
||||||
|
This function gets called automatically when needed, there should be no need to call it
|
||||||
|
yourself."""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
resp = requests.post('https://www.googleapis.com/oauth2/v4/token', data={
|
||||||
|
'client_id': self.client_id,
|
||||||
|
'client_secret': self.client_secret,
|
||||||
|
'refresh_token': self.refresh_token,
|
||||||
|
'grant_type': 'refresh_token',
|
||||||
|
}, metric_name='get_access_token')
|
||||||
|
resp.raise_for_status()
|
||||||
|
data = resp.json()
|
||||||
|
self._access_token = data['access_token']
|
||||||
|
expires_in = (start_time + data['expires_in']) - time.time()
|
||||||
|
if expires_in < self.ACCESS_TOKEN_REFRESH_TIME_BEFORE_EXPIRY:
|
||||||
|
self.logger.warning("Access token expires in {}s, less than normal leeway time of {}s".format(
|
||||||
|
expires_in, self.ACCESS_TOKEN_REFRESH_TIME_BEFORE_EXPIRY,
|
||||||
|
))
|
||||||
|
gevent.spawn_later(expires_in - self.ACCESS_TOKEN_REFRESH_TIME_BEFORE_EXPIRY, self.get_access_token)
|
||||||
|
except Exception:
|
||||||
|
logging.exception("Failed to fetch access token, retrying")
|
||||||
|
gevent.sleep(self.ACCESS_TOKEN_ERROR_RETRY_INTERVAL)
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
def request(self, method, url, headers={}, **kwargs):
|
||||||
|
# merge in auth header
|
||||||
|
headers = dict(headers, Authorization='Bearer {}'.format(self.access_token))
|
||||||
|
return requests.request(method, url, headers=headers, **kwargs)
|
@ -0,0 +1,55 @@
|
|||||||
|
|
||||||
|
"""Code for instrumenting requests calls. Requires requests, obviously."""
|
||||||
|
|
||||||
|
import urllib.parse
|
||||||
|
|
||||||
|
import requests.sessions
|
||||||
|
import prometheus_client as prom
|
||||||
|
from monotonic import monotonic
|
||||||
|
|
||||||
|
request_latency = prom.Histogram(
|
||||||
|
'http_client_request_latency',
|
||||||
|
'Time taken to make an outgoing HTTP request. '
|
||||||
|
'Status = "error" is used if an error occurs. Measured as time from first byte sent to '
|
||||||
|
'headers finished being parsed, ie. does not include reading a streaming response.',
|
||||||
|
['name', 'method', 'domain', 'status'],
|
||||||
|
)
|
||||||
|
|
||||||
|
response_size = prom.Histogram(
|
||||||
|
'http_client_response_size',
|
||||||
|
"The content length of (non-streaming) responses to outgoing HTTP requests.",
|
||||||
|
['name', 'method', 'domain', 'status'],
|
||||||
|
)
|
||||||
|
|
||||||
|
request_concurrency = prom.Gauge(
|
||||||
|
'http_client_request_concurrency',
|
||||||
|
"The number of outgoing HTTP requests currently ongoing",
|
||||||
|
['name', 'method', 'domain'],
|
||||||
|
)
|
||||||
|
|
||||||
|
class InstrumentedSession(requests.sessions.Session):
|
||||||
|
"""A requests Session that automatically records metrics on requests made.
|
||||||
|
Users may optionally pass a 'metric_name' kwarg that will be included as the 'name' label.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def request(self, method, url, *args, **kwargs):
|
||||||
|
_, domain, _, _, _ = urllib.parse.urlsplit(url)
|
||||||
|
name = kwargs.pop('metric_name', '')
|
||||||
|
|
||||||
|
start = monotonic() # we only use our own measured latency if an error occurs
|
||||||
|
try:
|
||||||
|
with request_concurrency.labels(name, method, domain).track_inprogress():
|
||||||
|
response = super().request(method, url, *args, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
latency = monotonic() - start
|
||||||
|
request_latency.labels(name, method, domain, "error").observe(latency)
|
||||||
|
raise
|
||||||
|
|
||||||
|
request_latency.labels(name, method, domain, response.status_code).observe(response.elapsed.total_seconds())
|
||||||
|
try:
|
||||||
|
content_length = int(response.headers['content-length'])
|
||||||
|
except (KeyError, ValueError):
|
||||||
|
pass # either not present or not valid
|
||||||
|
else:
|
||||||
|
response_size.labels(name, method, domain, response.status_code).observe(content_length)
|
||||||
|
return response
|
@ -0,0 +1,513 @@
|
|||||||
|
|
||||||
|
"""A place for common utilities between wubloader components"""
|
||||||
|
|
||||||
|
|
||||||
|
import base64
|
||||||
|
import datetime
|
||||||
|
import errno
|
||||||
|
import itertools
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
from collections import namedtuple
|
||||||
|
from contextlib import closing
|
||||||
|
from tempfile import TemporaryFile
|
||||||
|
|
||||||
|
import gevent
|
||||||
|
from gevent import subprocess
|
||||||
|
|
||||||
|
from .stats import timed
|
||||||
|
|
||||||
|
|
||||||
|
def unpadded_b64_decode(s):
|
||||||
|
"""Decode base64-encoded string that has had its padding removed.
|
||||||
|
Note it takes a unicode and returns a bytes."""
|
||||||
|
# right-pad with '=' to multiple of 4
|
||||||
|
s = s + '=' * (- len(s) % 4)
|
||||||
|
return base64.b64decode(s.encode(), b"-_")
|
||||||
|
|
||||||
|
|
||||||
|
class SegmentInfo(
|
||||||
|
namedtuple('SegmentInfoBase', [
|
||||||
|
'path', 'channel', 'quality', 'start', 'duration', 'type', 'hash'
|
||||||
|
])
|
||||||
|
):
|
||||||
|
"""Info parsed from a segment path, including original path.
|
||||||
|
Note that start time is a datetime and duration is a timedelta, and hash is a decoded binary string."""
|
||||||
|
@property
|
||||||
|
def end(self):
|
||||||
|
return self.start + self.duration
|
||||||
|
@property
|
||||||
|
def is_partial(self):
|
||||||
|
"""Note that suspect is considered partial"""
|
||||||
|
return self.type != "full"
|
||||||
|
|
||||||
|
|
||||||
|
def parse_segment_timestamp(hour_str, min_str):
|
||||||
|
"""This is faster than strptime, which dominates our segment processing time.
|
||||||
|
It takes strictly formatted hour = "%Y-%m-%dT%H" and time = "%M:%S.%f"."""
|
||||||
|
year = int(hour_str[0:4])
|
||||||
|
month = int(hour_str[5:7])
|
||||||
|
day = int(hour_str[8:10])
|
||||||
|
hour = int(hour_str[11:13])
|
||||||
|
min = int(min_str[0:2])
|
||||||
|
sec = int(min_str[3:5])
|
||||||
|
microsec_str = min_str[6:]
|
||||||
|
microsec_str += '0' * (6 - len(microsec_str)) # right-pad zeros to 6 digits, eg. "123" -> "123000"
|
||||||
|
microsec = int(microsec_str)
|
||||||
|
return datetime.datetime(year, month, day, hour, min, sec, microsec)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_segment_path(path):
|
||||||
|
"""Parse segment path, returning a SegmentInfo. If path is only the trailing part,
|
||||||
|
eg. just a filename, it will leave unknown fields as None."""
|
||||||
|
parts = path.split('/')
|
||||||
|
# left-pad parts with None up to 4 parts
|
||||||
|
parts = [None] * (4 - len(parts)) + parts
|
||||||
|
# pull info out of path parts
|
||||||
|
channel, quality, hour, filename = parts[-4:]
|
||||||
|
# split filename, which should be TIME-DURATION-TYPE-HASH.ts
|
||||||
|
try:
|
||||||
|
if not filename.endswith('.ts'):
|
||||||
|
raise ValueError("Does not end in .ts")
|
||||||
|
filename = filename[:-len('.ts')] # chop off .ts
|
||||||
|
parts = filename.split('-', 3)
|
||||||
|
if len(parts) != 4:
|
||||||
|
raise ValueError("Not enough dashes in filename")
|
||||||
|
time, duration, type, hash = parts
|
||||||
|
if type not in ('full', 'suspect', 'partial', 'temp'):
|
||||||
|
raise ValueError("Unknown type {!r}".format(type))
|
||||||
|
hash = None if type == 'temp' else unpadded_b64_decode(hash)
|
||||||
|
start = None if hour is None else parse_segment_timestamp(hour, time)
|
||||||
|
return SegmentInfo(
|
||||||
|
path = path,
|
||||||
|
channel = channel,
|
||||||
|
quality = quality,
|
||||||
|
start = start,
|
||||||
|
duration = datetime.timedelta(seconds=float(duration)),
|
||||||
|
type = type,
|
||||||
|
hash = hash,
|
||||||
|
)
|
||||||
|
except ValueError as e:
|
||||||
|
# wrap error but preserve original traceback
|
||||||
|
raise ValueError("Bad path {!r}: {}".format(path, e)).with_traceback(e.__traceback__)
|
||||||
|
|
||||||
|
|
||||||
|
class ContainsHoles(Exception):
|
||||||
|
"""Raised by get_best_segments() when a hole is found and allow_holes is False"""
|
||||||
|
|
||||||
|
|
||||||
|
@timed(
|
||||||
|
hours_path=lambda ret, hours_path, *args, **kwargs: hours_path,
|
||||||
|
has_holes=lambda ret, *args, **kwargs: None in ret,
|
||||||
|
normalize=lambda ret, *args, **kwargs: len([x for x in ret if x is not None]),
|
||||||
|
)
|
||||||
|
def get_best_segments(hours_path, start, end, allow_holes=True):
|
||||||
|
"""Return a list of the best sequence of non-overlapping segments
|
||||||
|
we have for a given time range. Hours path should be the directory containing hour directories.
|
||||||
|
Time args start and end should be given as datetime objects.
|
||||||
|
The first segment may start before the time range, and the last may end after it.
|
||||||
|
The returned list contains items that are either:
|
||||||
|
SegmentInfo: a segment
|
||||||
|
None: represents a discontinuity between the previous segment and the next one.
|
||||||
|
ie. as long as two segments appear next to each other, we guarentee there is no gap between
|
||||||
|
them, the second one starts right as the first one finishes.
|
||||||
|
Similarly, unless the first item is None, the first segment starts <= the start of the time
|
||||||
|
range, and unless the last item is None, the last segment ends >= the end of the time range.
|
||||||
|
Example:
|
||||||
|
Suppose you ask for a time range from 10 to 60. We have 10-second segments covering
|
||||||
|
the following times:
|
||||||
|
5 to 15
|
||||||
|
15 to 25
|
||||||
|
30 to 40
|
||||||
|
40 to 50
|
||||||
|
Then the output would look like:
|
||||||
|
segment from 5 to 15
|
||||||
|
segment from 15 to 25
|
||||||
|
None, as the previous segment ends 5sec before the next one begins
|
||||||
|
segment from 30 to 40
|
||||||
|
segment from 40 to 50
|
||||||
|
None, as the previous segment ends 10sec before the requested end time of 60.
|
||||||
|
Note that any is_partial=True segment will be followed by a None, since we can't guarentee
|
||||||
|
it joins on to the next segment fully intact.
|
||||||
|
|
||||||
|
If allow_holes is False, then we fail fast at the first discontinuity found
|
||||||
|
and raise ContainsHoles. If ContainsHoles is not raised, the output is guarenteed to not contain
|
||||||
|
any None items.
|
||||||
|
"""
|
||||||
|
# Note: The exact equality checks in this function are not vulnerable to floating point error,
|
||||||
|
# but only because all input dates and durations are only precise to the millisecond, and
|
||||||
|
# python's datetime types represent these as integer microseconds internally. So the parsing
|
||||||
|
# to these types is exact, and all operations on them are exact, so all operations are exact.
|
||||||
|
|
||||||
|
result = []
|
||||||
|
|
||||||
|
for hour in hour_paths_for_range(hours_path, start, end):
|
||||||
|
# Especially when processing multiple hours, this routine can take a signifigant amount
|
||||||
|
# of time with no blocking. To ensure other stuff is still completed in a timely fashion,
|
||||||
|
# we yield to let other things run.
|
||||||
|
gevent.idle()
|
||||||
|
|
||||||
|
# best_segments_by_start will give us the best available segment for each unique start time
|
||||||
|
for segment in best_segments_by_start(hour):
|
||||||
|
|
||||||
|
# special case: first segment
|
||||||
|
if not result:
|
||||||
|
# first segment is allowed to be before start as long as it includes it
|
||||||
|
if segment.start <= start < segment.end:
|
||||||
|
# segment covers start
|
||||||
|
result.append(segment)
|
||||||
|
elif start < segment.start < end:
|
||||||
|
# segment is after start (but before end), so there was no segment that covers start
|
||||||
|
# so we begin with a None
|
||||||
|
if not allow_holes:
|
||||||
|
raise ContainsHoles
|
||||||
|
result.append(None)
|
||||||
|
result.append(segment)
|
||||||
|
else:
|
||||||
|
# segment is before start, and doesn't cover start, or starts after end.
|
||||||
|
# ignore and go to next.
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# normal case: check against previous segment end time
|
||||||
|
prev_end = result[-1].end
|
||||||
|
if segment.start < prev_end:
|
||||||
|
# Overlap! This shouldn't happen, though it might be possible due to weirdness
|
||||||
|
# if the stream drops then starts again quickly. We simply ignore the overlapping
|
||||||
|
# segment and let the algorithm continue.
|
||||||
|
logging.warning("Overlapping segments: {} overlaps end of {}".format(segment, result[-1]))
|
||||||
|
continue
|
||||||
|
if result[-1].is_partial or prev_end < segment.start:
|
||||||
|
# there's a gap between prev end and this start, so add a None
|
||||||
|
if not allow_holes:
|
||||||
|
raise ContainsHoles
|
||||||
|
result.append(None)
|
||||||
|
result.append(segment)
|
||||||
|
|
||||||
|
# check if we've reached the end
|
||||||
|
if end <= segment.end:
|
||||||
|
break
|
||||||
|
|
||||||
|
# this is a weird little construct that says "if we broke from the inner loop,
|
||||||
|
# then also break from the outer one. otherwise continue."
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
break
|
||||||
|
|
||||||
|
# check if we need a trailing None because last segment is partial or doesn't reach end,
|
||||||
|
# or we found nothing at all
|
||||||
|
if not result or result[-1].is_partial or result[-1].end < end:
|
||||||
|
if not allow_holes:
|
||||||
|
raise ContainsHoles
|
||||||
|
result.append(None)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def hour_paths_for_range(hours_path, start, end):
|
||||||
|
"""Generate a list of hour paths to check when looking for segments between start and end."""
|
||||||
|
# truncate start and end to the hour
|
||||||
|
def truncate(dt):
|
||||||
|
return dt.replace(microsecond=0, second=0, minute=0)
|
||||||
|
current = truncate(start)
|
||||||
|
end = truncate(end)
|
||||||
|
# Begin in the hour prior to start, as there may be a segment that starts in that hour
|
||||||
|
# but contains the start time, eg. if the start time is 01:00:01 and there's a segment
|
||||||
|
# at 00:59:59 which goes for 3 seconds.
|
||||||
|
# Checking the entire hour when in most cases it won't be needed is wasteful, but it's also
|
||||||
|
# pretty quick and the complexity of only checking this case when needed just isn't worth it.
|
||||||
|
current -= datetime.timedelta(hours=1)
|
||||||
|
while current <= end:
|
||||||
|
yield os.path.join(hours_path, current.strftime("%Y-%m-%dT%H"))
|
||||||
|
current += datetime.timedelta(hours=1)
|
||||||
|
|
||||||
|
|
||||||
|
def best_segments_by_start(hour):
|
||||||
|
"""Within a given hour path, yield the "best" segment per unique segment start time.
|
||||||
|
Best is defined as type=full, or failing that type=suspect, or failing that the longest type=partial.
|
||||||
|
Note this means this function may perform os.stat()s.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
segment_paths = os.listdir(hour)
|
||||||
|
except OSError as e:
|
||||||
|
if e.errno != errno.ENOENT:
|
||||||
|
raise
|
||||||
|
# path does not exist, treat it as having no files
|
||||||
|
return
|
||||||
|
segment_paths.sort()
|
||||||
|
# raise a warning for any files that don't parse as segments and ignore them
|
||||||
|
parsed = []
|
||||||
|
for name in segment_paths:
|
||||||
|
try:
|
||||||
|
parsed.append(parse_segment_path(os.path.join(hour, name)))
|
||||||
|
except ValueError:
|
||||||
|
logging.warning("Failed to parse segment {!r}".format(os.path.join(hour, name)), exc_info=True)
|
||||||
|
|
||||||
|
for start_time, segments in itertools.groupby(parsed, key=lambda segment: segment.start):
|
||||||
|
# ignore temp segments as they might go away by the time we want to use them
|
||||||
|
segments = [segment for segment in segments if segment.type != "temp"]
|
||||||
|
if not segments:
|
||||||
|
# all segments were temp, move on
|
||||||
|
continue
|
||||||
|
|
||||||
|
full_segments = [segment for segment in segments if not segment.is_partial]
|
||||||
|
if full_segments:
|
||||||
|
if len(full_segments) != 1:
|
||||||
|
logging.info("Multiple versions of full segment at start_time {}: {}".format(
|
||||||
|
start_time, ", ".join(map(str, segments))
|
||||||
|
))
|
||||||
|
# We've observed some cases where the same segment (with the same hash) will be reported
|
||||||
|
# with different durations (generally at stream end). Prefer the longer duration (followed by longest size),
|
||||||
|
# as this will ensure that if hashes are different we get the most data, and if they
|
||||||
|
# are the same it should keep holes to a minimum.
|
||||||
|
# If same duration and size, we have to pick one, so pick highest-sorting hash just so we're consistent.
|
||||||
|
sizes = {segment: os.stat(segment.path).st_size for segment in segments}
|
||||||
|
full_segments = [max(full_segments, key=lambda segment: (segment.duration, sizes[segment], segment.hash))]
|
||||||
|
yield full_segments[0]
|
||||||
|
continue
|
||||||
|
# no full segments, fall back to measuring partials. Prefer suspect over partial.
|
||||||
|
yield max(segments, key=lambda segment: (
|
||||||
|
1 if segment.type == 'suspect' else 0,
|
||||||
|
os.stat(segment.path).st_size,
|
||||||
|
))
|
||||||
|
|
||||||
|
|
||||||
|
def streams_info(segment):
|
||||||
|
"""Return ffprobe's info on streams as a list of dicts"""
|
||||||
|
output = subprocess.check_output([
|
||||||
|
'ffprobe',
|
||||||
|
'-hide_banner', '-loglevel', 'fatal', # suppress noisy output
|
||||||
|
'-of', 'json', '-show_streams', # get streams info as json
|
||||||
|
segment.path,
|
||||||
|
])
|
||||||
|
# output here is a bytes, but json.loads will accept it
|
||||||
|
return json.loads(output)['streams']
|
||||||
|
|
||||||
|
|
||||||
|
def ffmpeg_cut_segment(segment, cut_start=None, cut_end=None):
|
||||||
|
"""Return a Popen object which is ffmpeg cutting the given single segment.
|
||||||
|
This is used when doing a fast cut.
|
||||||
|
"""
|
||||||
|
args = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-hide_banner', '-loglevel', 'error', # suppress noisy output
|
||||||
|
'-i', segment.path,
|
||||||
|
]
|
||||||
|
# output from ffprobe is generally already sorted but let's be paranoid,
|
||||||
|
# because the order of map args matters.
|
||||||
|
for stream in sorted(streams_info(segment), key=lambda stream: stream['index']):
|
||||||
|
# map the same stream in the same position from input to output
|
||||||
|
args += ['-map', '0:{}'.format(stream['index'])]
|
||||||
|
if stream['codec_type'] in ('video', 'audio'):
|
||||||
|
# for non-metadata streams, make sure we use the same codec (metadata streams
|
||||||
|
# are a bit weirder, and ffmpeg will do the right thing anyway)
|
||||||
|
args += ['-codec:{}'.format(stream['index']), stream['codec_name']]
|
||||||
|
# now add trim args
|
||||||
|
if cut_start:
|
||||||
|
args += ['-ss', str(cut_start)]
|
||||||
|
if cut_end:
|
||||||
|
args += ['-to', str(cut_end)]
|
||||||
|
# output to stdout as MPEG-TS
|
||||||
|
args += ['-f', 'mpegts', '-']
|
||||||
|
# run it
|
||||||
|
logging.info("Running segment cut with args: {}".format(" ".join(args)))
|
||||||
|
return subprocess.Popen(args, stdout=subprocess.PIPE)
|
||||||
|
|
||||||
|
|
||||||
|
def ffmpeg_cut_stdin(output_file, cut_start, duration, encode_args):
|
||||||
|
"""Return a Popen object which is ffmpeg cutting from stdin.
|
||||||
|
This is used when doing a full cut.
|
||||||
|
If output_file is not subprocess.PIPE,
|
||||||
|
uses explicit output file object instead of using a pipe,
|
||||||
|
because some video formats require a seekable file.
|
||||||
|
"""
|
||||||
|
args = [
|
||||||
|
'ffmpeg',
|
||||||
|
'-hide_banner', '-loglevel', 'error', # suppress noisy output
|
||||||
|
'-i', '-',
|
||||||
|
'-ss', cut_start,
|
||||||
|
'-t', duration,
|
||||||
|
] + list(encode_args)
|
||||||
|
if output_file is subprocess.PIPE:
|
||||||
|
args.append('-') # output to stdout
|
||||||
|
else:
|
||||||
|
args += [
|
||||||
|
# We want ffmpeg to write to our tempfile, which is its stdout.
|
||||||
|
# However, it assumes that '-' means the output is not seekable.
|
||||||
|
# We trick it into understanding that its stdout is seekable by
|
||||||
|
# telling it to write to the fd via its /proc/self filename.
|
||||||
|
'/proc/self/fd/1',
|
||||||
|
# But of course, that file "already exists", so we need to give it
|
||||||
|
# permission to "overwrite" it.
|
||||||
|
'-y',
|
||||||
|
]
|
||||||
|
args = map(str, args)
|
||||||
|
logging.info("Running full cut with args: {}".format(" ".join(args)))
|
||||||
|
return subprocess.Popen(args, stdin=subprocess.PIPE, stdout=output_file)
|
||||||
|
|
||||||
|
|
||||||
|
def read_chunks(fileobj, chunk_size=16*1024):
|
||||||
|
"""Read fileobj until EOF, yielding chunk_size sized chunks of data."""
|
||||||
|
while True:
|
||||||
|
chunk = fileobj.read(chunk_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
|
||||||
|
@timed('cut', cut_type='rough', normalize=lambda _, segments, start, end: (end - start).total_seconds())
|
||||||
|
def rough_cut_segments(segments, start, end):
|
||||||
|
"""Yields chunks of a MPEGTS video file covering at least the timestamp range,
|
||||||
|
likely with a few extra seconds on either side.
|
||||||
|
This method works by simply concatenating all the segments, without any re-encoding.
|
||||||
|
"""
|
||||||
|
for segment in segments:
|
||||||
|
with open(segment.path, 'rb') as f:
|
||||||
|
for chunk in read_chunks(f):
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
|
||||||
|
@timed('cut', cut_type='fast', normalize=lambda _, segments, start, end: (end - start).total_seconds())
|
||||||
|
def fast_cut_segments(segments, start, end):
|
||||||
|
"""Yields chunks of a MPEGTS video file covering the exact timestamp range.
|
||||||
|
segments should be a list of segments as returned by get_best_segments().
|
||||||
|
This method works by only cutting the first and last segments, and concatenating the rest.
|
||||||
|
This only works if the same codec settings etc are used across all segments.
|
||||||
|
This should almost always be true but may cause weird results if not.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# how far into the first segment to begin (if no hole at start)
|
||||||
|
cut_start = None
|
||||||
|
if segments[0] is not None:
|
||||||
|
cut_start = (start - segments[0].start).total_seconds()
|
||||||
|
if cut_start < 0:
|
||||||
|
raise ValueError("First segment doesn't begin until after cut start, but no leading hole indicated")
|
||||||
|
|
||||||
|
# how far into the final segment to end (if no hole at end)
|
||||||
|
cut_end = None
|
||||||
|
if segments[-1] is not None:
|
||||||
|
cut_end = (end - segments[-1].start).total_seconds()
|
||||||
|
if cut_end < 0:
|
||||||
|
raise ValueError("Last segment ends before cut end, but no trailing hole indicated")
|
||||||
|
|
||||||
|
# Set first and last only if they actually need cutting.
|
||||||
|
# Note this handles both the cut_start = None (no first segment to cut)
|
||||||
|
# and cut_start = 0 (first segment already starts on time) cases.
|
||||||
|
first = segments[0] if cut_start else None
|
||||||
|
last = segments[-1] if cut_end else None
|
||||||
|
|
||||||
|
for segment in segments:
|
||||||
|
if segment is None:
|
||||||
|
logging.debug("Skipping discontinuity while cutting")
|
||||||
|
# TODO: If we want to be safe against the possibility of codecs changing,
|
||||||
|
# we should check the streams_info() after each discontinuity.
|
||||||
|
continue
|
||||||
|
|
||||||
|
# note first and last might be the same segment.
|
||||||
|
# note a segment will only match if cutting actually needs to be done
|
||||||
|
# (ie. cut_start or cut_end is not 0)
|
||||||
|
if segment in (first, last):
|
||||||
|
proc = None
|
||||||
|
try:
|
||||||
|
proc = ffmpeg_cut_segment(
|
||||||
|
segment,
|
||||||
|
cut_start if segment == first else None,
|
||||||
|
cut_end if segment == last else None,
|
||||||
|
)
|
||||||
|
with closing(proc.stdout):
|
||||||
|
for chunk in read_chunks(proc.stdout):
|
||||||
|
yield chunk
|
||||||
|
proc.wait()
|
||||||
|
except Exception as ex:
|
||||||
|
# try to clean up proc, ignoring errors
|
||||||
|
if proc is not None:
|
||||||
|
try:
|
||||||
|
proc.kill()
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
raise ex
|
||||||
|
else:
|
||||||
|
# check if ffmpeg had errors
|
||||||
|
if proc.returncode != 0:
|
||||||
|
raise Exception(
|
||||||
|
"Error while streaming cut: ffmpeg exited {}".format(proc.returncode)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# no cutting needed, just serve the file
|
||||||
|
with open(segment.path, 'rb') as f:
|
||||||
|
for chunk in read_chunks(f):
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
|
||||||
|
def feed_input(segments, pipe):
|
||||||
|
"""Write each segment's data into the given pipe in order.
|
||||||
|
This is used to provide input to ffmpeg in a full cut."""
|
||||||
|
for segment in segments:
|
||||||
|
with open(segment.path, 'rb') as f:
|
||||||
|
try:
|
||||||
|
shutil.copyfileobj(f, pipe)
|
||||||
|
except OSError as e:
|
||||||
|
# ignore EPIPE, as this just means the end cut meant we didn't need all it
|
||||||
|
if e.errno != errno.EPIPE:
|
||||||
|
raise
|
||||||
|
pipe.close()
|
||||||
|
|
||||||
|
|
||||||
|
@timed('cut',
|
||||||
|
cut_type=lambda _, segments, start, end, encode_args, stream=False: ("full-streamed" if stream else "full-buffered"),
|
||||||
|
normalize=lambda _, segments, start, end, *a, **k: (end - start).total_seconds(),
|
||||||
|
)
|
||||||
|
def full_cut_segments(segments, start, end, encode_args, stream=False):
|
||||||
|
"""If stream=true, assume encode_args gives a streamable format,
|
||||||
|
and begin returning output immediately instead of waiting for ffmpeg to finish
|
||||||
|
and buffering to disk."""
|
||||||
|
|
||||||
|
# Remove holes
|
||||||
|
segments = [segment for segment in segments if segment is not None]
|
||||||
|
|
||||||
|
# how far into the first segment to begin
|
||||||
|
cut_start = max(0, (start - segments[0].start).total_seconds())
|
||||||
|
# duration
|
||||||
|
duration = (end - start).total_seconds()
|
||||||
|
|
||||||
|
ffmpeg = None
|
||||||
|
input_feeder = None
|
||||||
|
try:
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
# When streaming, we can just use a pipe
|
||||||
|
tempfile = subprocess.PIPE
|
||||||
|
else:
|
||||||
|
# Some ffmpeg output formats require a seekable file.
|
||||||
|
# For the same reason, it's not safe to begin uploading until ffmpeg
|
||||||
|
# has finished. We create a temporary file for this.
|
||||||
|
tempfile = TemporaryFile()
|
||||||
|
|
||||||
|
ffmpeg = ffmpeg_cut_stdin(tempfile, cut_start, duration, encode_args)
|
||||||
|
input_feeder = gevent.spawn(feed_input, segments, ffmpeg.stdin)
|
||||||
|
|
||||||
|
# When streaming, we can return data as it is available
|
||||||
|
if stream:
|
||||||
|
for chunk in read_chunks(ffmpeg.stdout):
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
# check if any errors occurred in input writing, or if ffmpeg exited non-success.
|
||||||
|
if ffmpeg.wait() != 0:
|
||||||
|
raise Exception("Error while streaming cut: ffmpeg exited {}".format(ffmpeg.returncode))
|
||||||
|
input_feeder.get() # re-raise any errors from feed_input()
|
||||||
|
|
||||||
|
# When not streaming, we can only return the data once ffmpeg has exited
|
||||||
|
if not stream:
|
||||||
|
for chunk in read_chunks(tempfile):
|
||||||
|
yield chunk
|
||||||
|
finally:
|
||||||
|
# if something goes wrong, try to clean up ignoring errors
|
||||||
|
if input_feeder is not None:
|
||||||
|
input_feeder.kill()
|
||||||
|
if ffmpeg is not None and ffmpeg.poll() is None:
|
||||||
|
for action in (ffmpeg.kill, ffmpeg.stdin.close, ffmpeg.stdout.close):
|
||||||
|
try:
|
||||||
|
action()
|
||||||
|
except (OSError, IOError):
|
||||||
|
pass
|
@ -0,0 +1,257 @@
|
|||||||
|
|
||||||
|
import atexit
|
||||||
|
import functools
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import signal
|
||||||
|
|
||||||
|
import gevent.lock
|
||||||
|
from monotonic import monotonic
|
||||||
|
import prometheus_client as prom
|
||||||
|
|
||||||
|
|
||||||
|
# need to keep global track of what metrics we've registered
|
||||||
|
# because we're not allowed to re-register
|
||||||
|
metrics = {}
|
||||||
|
|
||||||
|
|
||||||
|
def timed(name=None,
|
||||||
|
buckets=[10.**x for x in range(-9, 5)], normalized_buckets=None,
|
||||||
|
normalize=None,
|
||||||
|
**labels
|
||||||
|
):
|
||||||
|
"""Decorator that instruments wrapped function to record real, user and system time
|
||||||
|
as a prometheus histogram.
|
||||||
|
|
||||||
|
Metrics are recorded as NAME_latency, NAME_cputime{type=user} and NAME_cputime{type=system}
|
||||||
|
respectively. User and system time are process-wide (which means they'll be largely meaningless
|
||||||
|
if you're using gevent and the wrapped function blocks) and do not include subprocesses.
|
||||||
|
|
||||||
|
NAME defaults to the wrapped function's name.
|
||||||
|
NAME must be unique OR have the exact same labels as other timed() calls with that name.
|
||||||
|
|
||||||
|
Any labels passed in are included. Given label values may be callable, in which case
|
||||||
|
they are passed the input and result from the wrapped function and should return a label value.
|
||||||
|
Otherwise the given label value is used directly. All label values are automatically str()'d.
|
||||||
|
|
||||||
|
In addition, the "error" label is automatically included, and set to "" if no exception
|
||||||
|
occurs, or the name of the exception type if one does.
|
||||||
|
|
||||||
|
The normalize argument, if given, causes the creation of a second set of metrics
|
||||||
|
NAME_normalized_latency, etc. The normalize argument should be a callable which
|
||||||
|
takes the input and result of the wrapped function and returns a normalization factor.
|
||||||
|
All normalized metrics divide the observed times by this factor.
|
||||||
|
The intent is to allow a function which is expected to take longer given a larger input
|
||||||
|
to be timed on a per-input basis.
|
||||||
|
As a special case, when normalize returns 0 or None, normalized metrics are not updated.
|
||||||
|
|
||||||
|
The buckets kwarg is as per prometheus_client.Histogram. The default is a conservative
|
||||||
|
but sparse range covering nanoseconds to hours.
|
||||||
|
The normalized_buckets kwarg applies to the normalized metrics, and defaults to the same
|
||||||
|
as buckets.
|
||||||
|
|
||||||
|
All callables that take inputs and result take them as follows: The first arg is the result,
|
||||||
|
followed by *args and **kwargs as per the function's inputs.
|
||||||
|
If the wrapped function errored, result is None.
|
||||||
|
To simplify error handling in these functions, any errors are taken to mean None,
|
||||||
|
and None is interpreted as '' for label values.
|
||||||
|
|
||||||
|
Contrived Example:
|
||||||
|
@timed("scanner",
|
||||||
|
# constant label
|
||||||
|
foo="my example label",
|
||||||
|
# label dependent on input
|
||||||
|
all=lambda results, predicate, list, find_all=False: find_all,
|
||||||
|
# label dependent on output
|
||||||
|
found=lambda results, *a, **k: len(found) > 0,
|
||||||
|
# normalized on input
|
||||||
|
normalize=lambda results, predicate, list, **k: len(list),
|
||||||
|
)
|
||||||
|
def scanner(predicate, list, find_all=False):
|
||||||
|
results = []
|
||||||
|
for item in list:
|
||||||
|
if predicate(item):
|
||||||
|
results.append(item)
|
||||||
|
if not find_all:
|
||||||
|
break
|
||||||
|
return results
|
||||||
|
"""
|
||||||
|
|
||||||
|
if normalized_buckets is None:
|
||||||
|
normalized_buckets = buckets
|
||||||
|
# convert constant (non-callable) values into callables for consistency
|
||||||
|
labels = {
|
||||||
|
# need to create then call a function to properly bind v as otherwise it will
|
||||||
|
# always return the final label value.
|
||||||
|
k: v if callable(v) else (lambda v: (lambda *a, **k: v))(v)
|
||||||
|
for k, v in labels.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
def _timed(fn):
|
||||||
|
# can't safely assign to name inside closure, we use a new _name variable instead
|
||||||
|
_name = fn.__name__ if name is None else name
|
||||||
|
|
||||||
|
if _name in metrics:
|
||||||
|
latency, cputime = metrics[_name]
|
||||||
|
else:
|
||||||
|
latency = prom.Histogram(
|
||||||
|
"{}_latency".format(_name),
|
||||||
|
"Wall clock time taken to execute {}".format(_name),
|
||||||
|
list(labels.keys()) + ['error'],
|
||||||
|
buckets=buckets,
|
||||||
|
)
|
||||||
|
cputime = prom.Histogram(
|
||||||
|
"{}_cputime".format(_name),
|
||||||
|
"Process-wide consumed CPU time during execution of {}".format(_name),
|
||||||
|
list(labels.keys()) + ['error', 'type'],
|
||||||
|
buckets=buckets,
|
||||||
|
)
|
||||||
|
metrics[_name] = latency, cputime
|
||||||
|
if normalize:
|
||||||
|
normname = '{} normalized'.format(_name)
|
||||||
|
if normname in metrics:
|
||||||
|
normal_latency, normal_cputime = metrics[normname]
|
||||||
|
else:
|
||||||
|
normal_latency = prom.Histogram(
|
||||||
|
"{}_latency_normalized".format(_name),
|
||||||
|
"Wall clock time taken to execute {} per unit of work".format(_name),
|
||||||
|
list(labels.keys()) + ['error'],
|
||||||
|
buckets=normalized_buckets,
|
||||||
|
)
|
||||||
|
normal_cputime = prom.Histogram(
|
||||||
|
"{}_cputime_normalized".format(_name),
|
||||||
|
"Process-wide consumed CPU time during execution of {} per unit of work".format(_name),
|
||||||
|
list(labels.keys()) + ['error', 'type'],
|
||||||
|
buckets=normalized_buckets,
|
||||||
|
)
|
||||||
|
metrics[normname] = normal_latency, normal_cputime
|
||||||
|
|
||||||
|
@functools.wraps(fn)
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
start_monotonic = monotonic()
|
||||||
|
start_user, start_sys, _, _, _ = os.times()
|
||||||
|
|
||||||
|
try:
|
||||||
|
ret = fn(*args, **kwargs)
|
||||||
|
except Exception as e:
|
||||||
|
ret = None
|
||||||
|
error = e
|
||||||
|
else:
|
||||||
|
error = None
|
||||||
|
|
||||||
|
end_monotonic = monotonic()
|
||||||
|
end_user, end_sys, _, _, _ = os.times()
|
||||||
|
wall_time = end_monotonic - start_monotonic
|
||||||
|
user_time = end_user - start_user
|
||||||
|
sys_time = end_sys - start_sys
|
||||||
|
|
||||||
|
label_values = {}
|
||||||
|
for k, v in labels.items():
|
||||||
|
try:
|
||||||
|
value = v(ret, *args, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
value = None
|
||||||
|
label_values[k] = '' if value is None else str(value)
|
||||||
|
label_values.update(error='' if error is None else type(error).__name__)
|
||||||
|
|
||||||
|
latency.labels(**label_values).observe(wall_time)
|
||||||
|
cputime.labels(type='user', **label_values).observe(user_time)
|
||||||
|
cputime.labels(type='system', **label_values).observe(sys_time)
|
||||||
|
if normalize:
|
||||||
|
try:
|
||||||
|
factor = normalize(ret, *args, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
factor = None
|
||||||
|
if factor is not None and factor > 0:
|
||||||
|
normal_latency.labels(**label_values).observe(wall_time / factor)
|
||||||
|
normal_cputime.labels(type='user', **label_values).observe(user_time / factor)
|
||||||
|
normal_cputime.labels(type='system', **label_values).observe(sys_time / factor)
|
||||||
|
|
||||||
|
if error is None:
|
||||||
|
return ret
|
||||||
|
raise error from None # re-raise error with original traceback
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
return _timed
|
||||||
|
|
||||||
|
|
||||||
|
log_count = prom.Counter("log_count", "Count of messages logged", ["level", "module", "function"])
|
||||||
|
|
||||||
|
class PromLogCountsHandler(logging.Handler):
|
||||||
|
"""A logging handler that records a count of logs by level, module and function."""
|
||||||
|
def emit(self, record):
|
||||||
|
log_count.labels(record.levelname, record.module, record.funcName).inc()
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def install(cls):
|
||||||
|
root_logger = logging.getLogger()
|
||||||
|
root_logger.addHandler(cls())
|
||||||
|
|
||||||
|
|
||||||
|
def install_stacksampler(interval=0.005):
|
||||||
|
"""Samples the stack every INTERVAL seconds of user time.
|
||||||
|
We could use user+sys time but that leads to interrupting syscalls,
|
||||||
|
which may affect performance, and we care mostly about user time anyway.
|
||||||
|
"""
|
||||||
|
if os.environ.get('WUBLOADER_ENABLE_STACKSAMPLER', '').lower() != 'true':
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Installing stacksampler")
|
||||||
|
|
||||||
|
# Note we only start each next timer once the previous timer signal has been processed.
|
||||||
|
# There are two reasons for this:
|
||||||
|
# 1. Avoid handling a signal while already handling a signal, however unlikely,
|
||||||
|
# as this could lead to a deadlock due to locking inside prometheus_client.
|
||||||
|
# 2. Avoid biasing the results by effectively not including the time taken to do the actual
|
||||||
|
# stack sampling.
|
||||||
|
|
||||||
|
flamegraph = prom.Counter(
|
||||||
|
"flamegraph",
|
||||||
|
"Approx time consumed by each unique stack trace seen by sampling the stack",
|
||||||
|
["stack"]
|
||||||
|
)
|
||||||
|
# HACK: It's possible to deadlock if we handle a signal during a prometheus collect
|
||||||
|
# operation that locks our flamegraph metric. We then try to take the lock when recording the
|
||||||
|
# metric, but can't.
|
||||||
|
# As a hacky work around, we replace the lock with a dummy lock that doesn't actually lock anything.
|
||||||
|
# This is reasonably safe. We know that only one copy of sample() will ever run at once,
|
||||||
|
# and nothing else but sample() and collect() will touch the metric, leaving two possibilities:
|
||||||
|
# 1. Multiple collects happen at once: Safe. They only do read operations.
|
||||||
|
# 2. A sample during a collect: Safe. The collect only does a copy inside the locked part,
|
||||||
|
# so it just means it'll either get a copy with the new label set, or without it.
|
||||||
|
# This presumes the implementation doesn't change to make that different, however.
|
||||||
|
flamegraph._lock = gevent.lock.DummySemaphore()
|
||||||
|
# There is also a lock we need to bypass on the actual counter values themselves.
|
||||||
|
# Since they get created dynamically, this means we need to replace the lock function
|
||||||
|
# that is used to create them.
|
||||||
|
# This unfortunately means we go without locking for all metrics, not just this one,
|
||||||
|
# however this is safe because we are using gevent, not threading. The lock is only
|
||||||
|
# used to make incrementing/decrementing the counter thread-safe, which is not a concern
|
||||||
|
# under gevent since there are no switch points under the lock.
|
||||||
|
import prometheus_client.values
|
||||||
|
prometheus_client.values.Lock = gevent.lock.DummySemaphore
|
||||||
|
|
||||||
|
|
||||||
|
def sample(signum, frame):
|
||||||
|
stack = []
|
||||||
|
while frame is not None:
|
||||||
|
stack.append(frame)
|
||||||
|
frame = frame.f_back
|
||||||
|
# format each frame as FUNCTION(MODULE)
|
||||||
|
stack = ";".join(
|
||||||
|
"{}({})".format(frame.f_code.co_name, frame.f_globals.get('__name__'))
|
||||||
|
for frame in stack[::-1]
|
||||||
|
)
|
||||||
|
# increase counter by interval, so final units are in seconds
|
||||||
|
flamegraph.labels(stack).inc(interval)
|
||||||
|
# schedule the next signal
|
||||||
|
signal.setitimer(signal.ITIMER_VIRTUAL, interval)
|
||||||
|
|
||||||
|
def cancel():
|
||||||
|
signal.setitimer(signal.ITIMER_VIRTUAL, 0)
|
||||||
|
atexit.register(cancel)
|
||||||
|
|
||||||
|
signal.signal(signal.SIGVTALRM, sample)
|
||||||
|
# deliver the first signal in INTERVAL seconds
|
||||||
|
signal.setitimer(signal.ITIMER_VIRTUAL, interval)
|
@ -0,0 +1,12 @@
|
|||||||
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name = "wubloader-common",
|
||||||
|
version = "0.0.0",
|
||||||
|
packages = find_packages(),
|
||||||
|
install_requires = [
|
||||||
|
"gevent==1.5a2",
|
||||||
|
"monotonic",
|
||||||
|
"prometheus-client",
|
||||||
|
],
|
||||||
|
)
|
Loading…
Reference in New Issue